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Abstract -The problem of constructing a smooth C1 
continuous planar interpolated spline curve has attracted the 
attention of many people working in the area of CAD/CAM 
and its applications such as robotics. In the present paper we 
propose a method for constructing a C1 continuous planar 
interpolated spline using rational quadratic Bezier curve that 
falls within a closed boundary of straight line segments, which 
is most frequently used in computer graphics and geometric 
modelling. The rational quadratic curves are used by CAGD 
scientists since they do not require complex computations as 
other higher degree curves do. However, in practice it is 
desirable to approximate conic sections which cannot be 
represented by simple Bezier curve. Besides this, we have also 
presented the some useful properties of the rational quadratic 
Bezier curve. 
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1. INTRODUCTION

Computer aided geometric design (CAGD) is the science of 
design. The curve shape will be used to design, such as car, 
furniture, robot path or other industrial design. The shape 
may be more accurate if it is design by using computer. 
There are several problems whose solution requires this 
type of method. A user may wish to design a curve that fits 
on the given data points and falls within the boundary. A 
user may wish to design a smooth path that follow the 
given data points, like designing a robot path. 
The rational quartic representation of a conic section has 
been studied in some papers [1, 2, 3, 5]. In [14], Goodman, 
Ong, Unsworth have presented a construction of a G2 
continuous, shape-preserving curve made of rational cubics 
that interpolates given points and that lies on one side of a 
line, or several lines. In[4], Meek, Ong, Walton have given 
a method for a G2 continuous curve made of rational cubics 
that interpolates to given points inside an arbitrary polygon. 
In [12], interpolation to data points that lie on one side of 
one or more lines has been considered for generating a G2 
rational cubics spline which also lies on the same side of 
each of these lines is given by Goodman et al., (1991). 
In all the results mentioned above the rational cubics of 
degree three have been used which are more complex than 
the rational quadratic.  In [6], the non-parametric C1 
rational cubic scheme is extended to include quadratic 
curves, by relaxing the linear constraints, and the weights 
of the rational cubic are adjusted so as to satisfy the 
conditions that a rational cubic curve does not cross a given 
line. In [1], a method for constructing G1 quadratic Bezier 

curves that satisfy given endpoint (positions and arbitrary 
unit tangent vectors) conditions is described.  
In this paper we present a method of constructing a 
constrained C1 planar interpolated spline using rational 
quadratic Bezier curve that falls within a closed boundary 
of straight line segments. To solve this problem we have 
used rational quadratic Bezier curve because the space and 
computation costs of quadratic Bezier curves are both 
smaller than any other free form curves of degree three or 
higher. The method used here also gives more localized 
control on the curve segment. 
The paper is organized as follows. In Section 2, we present 
the rational quadratic B´ezier curves on the 2 − D plane 
and some important properties of the families of curves 
derived from a rational quadratic. In Section 3 provides an 
approach to construct the composite C1 continuous rational 
quadratic Bezier curves with the endpoint constrains. 
Section 4 is devoted to determination of the conditions for 
which the curve that passes through a given point and the 
given line segment will be tangent to a curve. This will be 
useful in the construction of the constrained interpolating 
curve in Section 5. Concluding remarks are presented in the 
last section. 

2. RATIONAL QUADRATIC BEZIER CURVE

The family of rational quadratic Bezier curves B (t) with 
non-zero area of control triangle B0B1B2 is represented by 
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Where Bi (i = 0, 1, 2) are the control points of the curve 
and wi are the weights. 

Here we list some useful properties of rational quadratic.  
2.1 Uniqueness of Weights: For a rational quadratic 

Bezier curve the value of w0w2/4w1
2 remains 

unchanged, so without loss of generality we may 
assume that w0 = 1, w2 = 1. We can then rewrite 
(1) as:  
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It is called the standard form of rational quadratic Bezier 
curve. It is well known that the members of this family of 
curves are segment of conic [2].  
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2.2 Convex Hull: For w1 >0 every family of curve segment 
lies in the convex hull of the control polygon.  

 
2.3 Endpoints interpolation: It is easy to see that the curve 
goes through the both endpoints B0 and B2. We have 
B(0) =B0                      B(1) =B2 

B’(0) has the same direction with the vector   B1-B0 and 
B’(1)has the same direction with the vector B2-B1. 

  
2.4 Type Parameter: Different conics are uniquely 
determined by the weight w1. The curve is a segment of 
parabola when the weight w1 =1; w1 <1 gives a segment of 
an ellipse, and w1 >1 gives a segment of a hyperbola. If we 
change the sign of the weight w1, then it will represent the 
complementary segment of the conics.   

 
3. FINDING CURVES PASSING THROUGH GIVEN POINTS 

AND TANGENT TO GIVEN LINE SEGMENTS. 
3.1 The curve that passes through a given point 
The standard form of rational quadratic Bezier curve is 
given by the Eq.(2). 
The points on a rational quadratic Bezier curve are a 

weighted average of the control points 10 , BB and 2B . 

With the restrictions on t  and 1w  in Eq.(2), all of the 

weights are positive, so all points ),( 1wtB  will be inside 

the control triangle 210 ,, BBB .  

 
Figure 1: The curve passing through a given point  

 

Given the control points 210 ,, BBB  and we know that the 

curve pass through a point P where the point is inside 

the ),,( 210 BBB . We need to find out the )1,0(t and 

),0(1 w such that PwtB ),( 1 . 

  Let the intersection point of the line through 0B  and 2B  

with the line through 1B and P is ),( yx ppS . The point of 

intersection for a given t is also on )0,(tB  such that 

),()0,( yx ppStB   and this allows the solution of t 

independently of 1w . The line through 0B  and 2B is from 

Eq. (2) 
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Now from ),()0,( yx ppStB   we have 
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         Now from Eq.(4) we have the system equations 
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The value of t  can be computed either from Eq.(5) or 
Eq.(6) by solving the quadratic equation in t . We choose 

the value of )1,0(t . 

           Once the t  value is calculated from the Eq.(5) or 

Eq.(6), the corresponding positive value for 1w  is 

calculated from Eq.(2) as 
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Therefore if the P is inside the Bezier control triangle 

210 ,, BBB  then there is a unique curve that passes through 

P. If P is not inside the control triangle then there is no 
curve that passes through P. 
 
3.2 The curve which is tangent to a given line segment 
 

Given the control points 210 B,B,B  and the line segment 

L which intersects the polygon at 0B  and 1B .  We have to 

find the w1 value of the curve that is tangent to a given line 
segment L.  
  
        We can define the weight points of a conic section by 
the using A de Casteljau Algorithm as  
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Now the weight point’s q0 and q1 of a conic section are 
given by  
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Figure 2: conic constructions: B0,B1,B2, and the tangent 

are given 
 
The ratio of three collinear points a, b, c is defined by 

ratio (a, b, c) 
),(

),(
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  --------(9) 

Where volume denotes the one-dimensional volume, which 
is the signed distance between two points. 

Now we can compute the ratio of  100 ,, BBB   and 

211 ,, BBB   as follows 
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Now from the definition of the weight point iq  in Eq. (8), 

it follows that 













1211

1100

/1),,(

),,(

wBqBratio

and

wBqBratio

--------------- (11) 

The cross ratio cr of four collinear points is defined as a 
ratio of ratios 
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So the cr of four points 
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Now by the four tangent theorems we have 
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From equation (13) we have 
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Now from equation (10) and (11) we have 
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4. CONSTRUCTION OF THE CONSTRAINED INTERPOLATING 

CURVE 
 
4.1 Algorithm 
Based upon the above discussion, we propose an algorithm 
that could be used to generate a straight line boundary 
avoiding curve. 
Algorithm. Given polyline path (guiding path) segments 
{Ii: 0≤ i≤n-1} where there are no two consecutive coincide 
points, and a constraint polyline with boundary segments 
{Li: 0≤i ≤m-1} that do not intersect with the given polyline 
joining the data points. 
(1) For i = 0, 1, . . .,n − 1, construct the rational quadratic 

bezier curve segment i of the form B (t, w1) as 
described in section 5. 

(2) For i = 0, 1, . . .,n − 1,  
(a) For each of the Be´zier curves, check all boundary 

segments that are partly, entirely inside or entirely 
outside the Be´zier control triangle. 

(i) If boundary does not enter the control triangle 
then the initial curve does not intersect the 
boundary, so the curve with w1=1 will be the 
final curve. 

(ii) If boundary enters the control triangle then the 
initial curve may intersect the boundary,  so 
determine the w-value of the curve that avoids 
all those boundary segments Li. by performing 
the necessary operation: 
1. Find the rational quadratic B (t, w1) which 

passes through the joining point of the 
concerned two boundary segments by using 
the results of section 4.1 

 
2. Find the rational quadratic B(t,w1) which 

touches the concerned boundary segments 
using the results of section 4.2 

(b) Determine the weight factor hw  which is the 

largest of all the 1w -values of the curves, then w1 

= max (1, wh) is the w-value of a curve (2) that 
does not intersect any of the boundary segments.  

(c) The default value of weight factor w1= 1 is used if 
the boundary segments allow that value. 

 

Ashu Pal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2111-2114

www.ijcsit.com 2113



 
5.0 GRAPHICAL EXAMPLES 

We shall illustrate our above discussion with two examples. 
In both examples the data points are lying inside the 
boundary and marked by "" . 
The First example shown in Fig 7 with 9 data in which five 
initial curve segments crossed the boundary. The resultant 

curve with 1w  value is determined by using the algorithm 

described in sections 5.2 such that the final curve avoids all 
the straight line boundary segments. 

 
Figure 3: Example 1 

 
The second example shown in Fig 8 is a complex problem 
in which a portion of curve may intersect two boundary 
segments. For solution of such complex problem we have 

determined the resultant curve with 1w  value by using the 

algorithm described in sections 5.2 such that the final curve 
must passes through the joining point of the boundary 
segments and it avoids all the boundary segments 

 
Figure 4: Example 2 

6.0 CONCLUSIONS 
We presented 2D interpolation schemes which all strive to 
produce spline curves interpolated to set of given data 
point. The schemes also work for 3D, but this was not 
tested. It may be more desirable to produce an interpolated 
spline curve that avoid the given circular arc polygon 
boundary.  
 

REFERENCES 
[1] He-Jin Gu, Jun-Hai Yong, Jean-Claude Paul, Fuhua (Frank) Cheng, 

constructing G1 quadratic Bezier curves with arbitrary endpoint 
tangent vectors. "The 11th IEEE International Conference on 
CAD/Graphics -CAD/GRAPHICS 2009 (2009) 263-267" 

[2] Xunnian Yang*, Curve fitting and fairing using conic splines. 
Computer-Aided Design 36 (2004) 461–472 

[3] Lian Fang, A rational quartic Bézier representation for conics, 
Computer Aided Geometric Design 19 (2002) 297–312 

[4] Constrained interpolation with rational cubics D.S. Meek  a, B.H. 
Ongb,, D.J. Walton Computer Aided Geometric Design 20 (2003) 
253–275 

[5] Meek, D.S., Ong, B.H., Walton, D.J., A constrained guided 
G1continuous spline curve.  Computer-Aided Design 35 (2003) 591–
599 

[6] Ong, B.H., Unsworth, K.K., 1992. On non-parametric constrained 
interpolation. In Lyche, T., Schumaker, L.L. (Eds.), Mathematical 
Methods in Computer Aided   Geometric Design II. Academic Press, 
pp. 419–430. 

[7] Interactive shape preserving interpolation by curvature continuous 
rational cubic    splines Chris Seymour, Keith Unsworth, journal of 
computational and applied       mathematics September 1998. 

[8] T.A. Foley, T.N.T. Goodman, K. Unsworth, An algorithm for  shape 
preserving parametric interpolating curves with G 2 continuity, in: T. 
Lyche, L.L. Schumaker    (Eds.), Mathematical  Methods in 
Computer Aided Geometric Design, Academic    Press.  

[9] T.N.T. Goodman, Shape preserving interpolation by parametric 
rational cubic splines in: Intnl. Series of Numerical Mathematics, 
vol. 86, Birkhauser Basel, 1988, pp. 149- 158. 

[10] Chan, E.S., Ong, B.H., 2001. Range restricted scattered data 
interpolation using      convex   combination of cubic Bézier 
triangles.J. Comput. Appl. Math. 136, 135–147. 

[11] T.N.T. Goodman, B.H. Ong, Shape preserving interpolation by space 
curves,        Computer Aided Geom. Design 15 (1997) 1-17. 

[12] Goodman, T.N.T., Ong, B.H., Unsworth, K., 1991. Constrained 
interpolation using rational cubic splines. In: Farin, G. (Ed.), Nurbs 
for Curve and Surface Design.  SIAM, Philadelphia, pp. 59–74. 

[13] McKerrow, P.J., 1991. Introduction to Robotics. Addison- Wesley, 
New York. 

[14] Goodman TNT, Ong BH, Unsworth K. Constrained interpolation 
using rational   cubic splines. In: Farin G, editor. NURBS for curve 
and surface design. Philadelphia: SIAM; 1991. p. 59–74. 

 
 
 

 

Ashu Pal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2111-2114

www.ijcsit.com 2114




